Chemistry 230
 Problem Set \# 10 -- Answers

1. This problem is like Problem 2 on PS 9, but with the inclusion of the correction for real gas behavior in part (b). See Problems 7.44 and 8.27 in Levine (except use $23.7 \underline{56}$ torr). One obtains $8557 \mathrm{~J} / \mathrm{mol}$, which agrees with the result from tabulated data in the appendix.
2. (a) $a=3.61 \mathrm{~L}^{2} \mathrm{~atm} \mathrm{~mol}{ }^{-2} ; b=0.0429 \mathrm{~L} / \mathrm{mol}$.
(b) $H_{\mathrm{m}, \mathrm{id}}-H_{\mathrm{m}}=25.2 \mathrm{~J} / \mathrm{mol} ; S_{\mathrm{m}, \mathrm{id}}-S_{\mathrm{m}}=0.0495 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; G_{\mathrm{m}, \mathrm{id}}-G_{\mathrm{m}}=10.47 \mathrm{~J} / \mathrm{mol}$.
3. $\ln \phi_{P}=\int_{0}^{P}\left[\frac{V_{\mathrm{m}}}{R T}-\frac{1}{P^{\prime}}\right] d P^{\prime}$. One must first compute from the experimental data the integrand (the quantity in square brackets) and plot it $v s . P^{\prime}$. Then one must integrate it to the desired final P.
(a) A least-squares fit of the integrand gives: []$=-0.0036+4.1135 \mathrm{E}-06 P-5.9313 \mathrm{E}-08 P^{2}$.

Integration yields $\ln \phi=-0.1486$ at $P=40 \mathrm{~atm} \Rightarrow \phi 40=0.862$ and $f_{40}=34.5 \mathrm{~atm}$.
At $P=90 \mathrm{~atm}, \phi 90=0.701$ and $f_{90}=63.1 \mathrm{~atm}$.
(b) $40 \mathrm{~atm}: P_{r}=40 / 72.8=0.549 ; T_{r}=333 / 304.2=1.095 \Rightarrow \phi 40 \approx 0.93$ and $f_{40}=37 \mathrm{~atm}$. $90 \mathrm{~atm}: P_{r}=90 / 72.8=1.236 \Rightarrow \phi 90 \approx 0.85$ and $f_{90}=76 \mathrm{~atm}$.
(c) Using the a and b values from Problem 2 above, together with the results from Problem 10.43 in Levine, we obtain: $\quad \phi 40=0.872$ and $f_{40}=34.9 \mathrm{~atm} ; ~ \phi 90=0.721$ and $f_{90}=64.9 \mathrm{~atm}$.
4. (a) $\Delta H^{\circ}=-48.9 \mathrm{~kJ} / \mathrm{mol} ; ~ \Delta G^{\circ}{ }_{1000}=-66.6 \mathrm{~kJ} / \mathrm{mol} ; ~ \Delta S^{\circ}=17.69 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
(b) With only three points it is really hard to decide whether any deviation from the straight line is real or simply due to experimental uncertainty. The values obtained in Part (a) were based on the assumption of linearity in the van't Hoff plot, which is equivalent to assuming that ΔH° and ΔS° are independent of T. If we believe the deviation from linearity is real, then the slight upward curvature means that $\left|\Delta H^{\circ}\right|$ is less at large T (small $1 / T$) than at small T. Since ΔH° is also negative, this means it is larger (more positive) at large T, which in turn means that $\Delta C_{P}>0$.
(c) $Q \approx P_{\mathrm{CO}_{2}} / P_{\mathrm{CO}}=4 \ll K^{\circ}$, so the reaction must proceed to the right. This is reduction of NiO.
5. $\quad K^{\circ}=\frac{a(\mathrm{CaO}) a\left(\mathrm{CO}_{2}\right)}{a\left(\mathrm{CaCO}_{3}\right)}$. For solids $\ln a \approx V_{\mathrm{m}} \frac{\Delta P}{R T}$. At the indicated P and T this yields $a\left(\mathrm{CaCO}_{3}\right)=1.48$ and $a(\mathrm{CaO})=1.19$. For $\mathrm{CO}_{2} @ 1115 \mathrm{~atm}$ and $1273 \mathrm{~K}, P_{r}=15.3$ and $T_{r}=4.18 \Rightarrow \phi \approx 1.11$. Using $K^{\circ}=4.5$ and solving for $P_{\mathrm{CO}_{2}}$ we obtain 5.0 bar , which is about 10% larger than would be obtained without the large added pressure of Ar. (In this case there is substantial cancellation of the pressure effects on the two sides of the equation.)

