1. Three resistors connected in parallel produce a resistance R given by $R^{-1}=R_{1}{ }^{-1}+R_{2}{ }^{-1}+R_{3}{ }^{-1}$. Find $\partial R / \partial R_{2}$. Evaluate R and this partial if $R_{1}=100 \mathrm{ohm}, R_{2}=200 \mathrm{ohm}$, and $R_{3}=50 \mathrm{ohm}$.
2. (a) Find $\partial w / \partial z$ if $w=(x y)^{z}$.
(b) Obtain $\partial w / \partial x$ and $\partial w / \partial y$ for: (i) $w=e^{x} \cos y$; (ii) $w=\ln \left(x^{2}+y^{2}\right)^{1 / 2}$.
3. Find the partial derivatives of f with respect to each independent variable, for

$$
\text { (a) } f(x, y, z, w)=x^{2} e^{2 y+3 z} \cos 4 w ; \text { (b) } f(r, \theta, z)=\frac{r(2-\cos 2 \theta)}{r^{2}+z^{2}} \text {. }
$$

4. Express the spherical coordinates ρ, θ, ϕ in terms of the Cartesian coordinates x, y, and z; and then determine (a) $\partial \rho / \partial x$, (b) $\partial \theta / \partial y$, and (c) $\partial \phi / \partial x$.
5. Let the vector \mathbf{R} be $\mathbf{R}=\mathbf{i} x+\mathbf{j} y+\mathbf{k} f(x, y)$, where \mathbf{i}, \mathbf{j}, and \mathbf{k} are unit vectors pointed along the x, y, and z axes, respectively. What can you say about the directions of the vectors, (a) $\partial \mathbf{R} / \partial x$, and (b) $\partial \mathbf{R} / \partial y$?
6. Suppose $w=e^{2 x+3 y} \cos 4 z$, and x, y, and z are all functions of t, given by $x=\ln t, y=\ln \left(t^{2}+1\right), z=t$. Find $d w / d t$ by
(a) expressing w explicitly as a function of t and differentiating.
(b) using the chain rule (with partial differentiation).
7. If we substitute polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ in a function $w=f(x, y)$, show that (a) $\partial w / \partial r=f_{x} \cos \theta+f_{y} \sin \theta$; and (b) $\mathrm{r}^{-1} \partial w / \partial \theta=-f_{x} \sin \theta+f_{y} \cos \theta$ (f_{x} and f_{y} are the partials with respect to x and y, respectively).
8. Consider the function $w=x^{2}+y^{2}+z^{2}$. Express the total differential $d w$ in terms of the independent variables x, y, and z.
Now suppose that $x=r \cos s, y=r \sin s$, and $z=r$. Express the total differentials $d x, d y$, and $d z$ in terms of the independent variables r and s, and substitute in your previous result for $d w$ to show that $d w=4 r d r$.
Alternatively, substitute for x, y, and z in w and obtain the exact differential $d w$ in terms of the independent variables r and s. You should obtain the same result.
9. (a) Given $x=r \cos \theta, y=r \sin \theta$, express $d x$ and $d y$ in term of $d r$ and $d \theta$. (b) Solve the equations of part (a) for $d r$ and $d \theta$ in terms of $d x$ and $d y$. (c) In the answer to part (b) suppose A and B are the coefficients of $d x$ and $d y$ in the expression for $d r$, i.e., $d r=A d x+B d y$. Verify by direct computation that $A=\partial r / \partial x$ and $B=\partial r / \partial y$, where $r^{2}=x^{2}+y^{2}$.
10. In a multivariate function, maxima and minima (if they exist) are found by setting the partial derivative with respect to each independent variable equal to zero and solving the resulting set of equations. Find any maxima or minima for the following functions: (a) $z=x^{2}+x y+y^{2}+3 x-3 y+4$; (b) $z=x^{2}+x y+3 x+2 y+5$.
11. (a) If $w=\cos (x+y)+\sin (x-y)$, show that $\partial^{2} w / \partial x^{2}=\partial^{2} w / \partial y^{2}$.
(b) If c is a constant and $w=f(x+c t)+g(x-c t)$, where $f(u)$ and $g(v)$ are twice-differentiable functions of $u=x+c t$ and $v=x-c t$, respectively, show that

$$
\frac{\partial^{2} w}{\partial t^{2}}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}=c^{2}\left(f^{\prime \prime}(u)+g^{\prime \prime}(v)\right)
$$

(c) Verify that $w_{x y}=w_{y x}$ for (i) $w=\ln (2 x+3 y)$; (ii) $w=x y^{2}+x^{2} y^{3}+x^{3} y^{4}$.
12. Apply the Euler reciprocity relation to determine if the following are exact differentials: (a) $e^{y} d x+$ $x\left(e^{y}+1\right) d y$; (b) $(2 x+y) d x+(x+2 y) d y$; (c) $\left(1+e^{x}\right) d y+e^{x}(y-x) d x$. If the expression is an exact differential, $d f$, find f.

