NAME: \qquad
(please print)

CHEMISTRY 230 - Tellinghuisen
2nd Hour Exam - 11/8/01

Honor Code Pledge and Signature:

Fundamental Constants: $\quad R=8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.0820578 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=1.9872 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
I. (35) The Third Degree. The molar heat capacity of a solid substance at $P=P^{\circ}$ can be represented over a certain range of temperatures as a polynomial in $T, C_{P, \mathrm{~m}}=a+b T+c T^{2}$.
A. Obtain expressions for $\Delta H_{\mathrm{m}}{ }^{\circ}$ and $\Delta S_{\mathrm{m}}{ }^{\circ}$ for heating this substance from T_{1} to T_{2}.
B. For $\mathrm{CS}_{2}(s)$ in the range $15 \mathrm{~K}-60 \mathrm{~K}, a=-11.53 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, b=1.365 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-2}$, and $c=-0.0095 \mathrm{~J}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-3}$. Calculate $\Delta H_{\mathrm{m}}{ }^{\circ}$ and $\Delta S_{\mathrm{m}}{ }^{\circ}$ for heating $\mathrm{CS}_{2}(s)$ from 15.0 K to 60.0 K .
C. Use the Debye theory for the heat capacity at low temperatures to estimate $S_{\mathrm{m}}{ }^{\circ}$ for $\mathrm{CS}_{2}(s)$ at 15.0 K ; then calculate $S_{\mathrm{m}}{ }^{\circ}$ at 60.0 K .
D. Can this information be used to evaluate $\Delta G_{\mathrm{m}}{ }^{\circ}$ for the heating of $\mathrm{CS}_{2}(s)$ from 15.0 K to 60.0 K ? Explain very briefly.
II. (25) Shifty Reactions. The shift reaction - $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftarrows \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$ - is important in the commercial production of hydrogen. Use tabulated values of the free energy function given below to calculate K° for this reaction at 1000 K .

Gaseous elements and compounds with values referenced to $\boldsymbol{H}_{0}{ }^{\circ}$

	$-\left(\boldsymbol{G}_{\boldsymbol{T}}-\boldsymbol{H}_{\mathbf{0}}{ }^{\circ}\right) / \boldsymbol{R T}$					$\left(\boldsymbol{H}_{\mathbf{2 9 8}} \mathbf{- H}_{\mathbf{0}}{ }^{\circ}\right) / \boldsymbol{R}$	$\Delta \boldsymbol{H}_{\boldsymbol{f}, \mathbf{0}} / \boldsymbol{R}$
	$\mathbf{2 9 8 . 1 5 ~ K}$	$\mathbf{5 0 0} \mathbf{K}$	$\mathbf{1 0 0 0} \mathbf{K}$	$\mathbf{1 5 0 0} \mathbf{K}$	$\mathbf{2 0 0 0} \mathbf{K}$	$\mathbf{(K)}$	$\left(\mathbf{1 0}^{\mathbf{3} \mathbf{K})}\right.$
H_{2}	12.301	14.076	16.485	17.921	18.968	1018.5	-
O_{2}	21.173	22.992	25.521	27.088	28.243	1044.0	-
CO	20.275	22.086	24.558	26.069	27.183	1042.9	-13.69 ± 0.02
CO_{2}	21.934	24.001	27.246	29.445	31.138	1126.4	-47.29 ± 0.01
$\mathrm{H}_{2} \mathrm{O}$	18.716	20.802	23.674	25.493	26.881	1191.3	-28.736 ± 0.005
CH_{4}	18.376	20.531	24.00	26.63	28.82	1204.7	-7.999

III. (35) Upping the Pressure (vapor, that is). Consider the process, $\mathrm{Br}_{2}(l) \rightleftarrows \mathrm{Br}_{2}(g)$.
A. Use thermodynamic data tabulated below to calculate $\Delta H^{\circ}{ }_{298}, \Delta S^{\circ}{ }_{298}$, and $\Delta G^{\circ}{ }_{298}$ for this process.
B. Specify precisely what states of reactants and products are implied for these calculated quantities. Then construct a 4-step, constant- T path that accomplishes the conversion from reactant to product and includes the equilibrium conversion of liquid to gas at the vapor pressure P of $\mathrm{Br}_{2}(l)$ at $25.0^{\circ} \mathrm{C}$.
C. Use your results from A (and B) to calculate $\Delta H_{\text {vap }}$ and the approximate vapor pressure of $\mathrm{Br}_{2}(l)$ at $25^{\circ} \mathrm{C}$.
D. V_{m} of $\mathrm{Br}_{2}(l)$ is $51.2 \mathrm{~cm}^{3} / \mathrm{mol}$. Calculate the activity of $\mathrm{Br}_{2}(l)$ under Ar gas at $P_{\mathrm{Ar}}=777 \mathrm{~atm}$.
E. Hence, what is the approximate vapor pressure of $\mathrm{Br}_{2}(l)$ at $P_{\mathrm{Ar}}=777 \mathrm{~atm}$? (Neglect the effect of the Ar on the fugacity of $\mathrm{Br}_{2}(g)$.)
F. In discussing the vapor/condensed-phase equilibrium processes of Br_{2} in class, we illustrated with a figure showing two intersecting straight lines. What was plotted on the two axes, and why were there two lines?

STANDARD-STATE THERMODYNAMIC PROPERTIES AT $25^{\circ} \mathrm{C}$ AND 1 BAR

Substance

$\Delta \boldsymbol{H}_{\boldsymbol{f}, \mathbf{2 9 8}}^{\circ}$	$\Delta \boldsymbol{G}_{\boldsymbol{f}, 298}^{\circ}$	$S_{\mathrm{m}, 298}^{\circ}$	$\boldsymbol{C}_{\boldsymbol{P}, \mathrm{m}, 298}^{\circ}$
$(\mathrm{kJ} / \mathrm{mol})$	$(\mathrm{kJ} / \mathrm{mol})$	$\left(\frac{\mathrm{J}}{\mathrm{mol} \mathrm{K}}\right)$	$\left(\frac{\mathrm{J}}{\mathrm{mol} \mathrm{K}}\right)$

$\operatorname{Br}(g)$

111.884	82.396	175.022	20.786
-121.55	-103.97	82.4	-141.8
0	0	152.231	75.689
30.907	3.110	245.463	36.02

IV. (45) Short Shots. Do JUST 3 of the following.
A. Consider the ideal gas dissociation equilibrium, $\mathrm{A}(g) \rightleftarrows \mathrm{B}(g)+2 \mathrm{C}(g)$.

1. Give the equilibrium expression for K_{P}° in terms of the partial pressures of reactants and products.
2. Obtain an equation which could be solved to yield the degree of dissociation α in terms of K_{P}° and the total pressure P. [Hint: Start with n_{0} mols of A and no B or C.]

Prob I
II \qquad

B. Consider the virial 2 equation (i.e., the version that is a power series in P).

1. Give this equation through the term that includes the third virial coefficient.
2. Define the compressibility factor Z for a gas that obeys this equation.
3. Obtain expressions for the fugacity coefficient ϕ and the fugacity f for such a gas.
C. Long ago we determined that the Joule-Thomson coefficient μ_{JT} is related to C_{P} and $(\partial H / \partial P)_{T}$ by $(\partial H / \partial P)_{T}=-C_{P} \mu_{\mathrm{JT}}$. Use this result to evaluate ΔH for the isothermal $(T=300 \mathrm{~K})$ compression of 1.00 mol of CO_{2} from 1.00 atm to 50.00 atm , given the following expressions for $C_{P}(T)$ and $\mu_{\mathrm{JT}}(P)$:

$$
\begin{aligned}
& C_{P, \mathrm{~m}}=26.00+0.0435 T-1.483 \times 10^{-5} T^{2}\left(\text { units } \mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; T \text { in } \mathrm{K}\right) \\
& \mu_{\mathrm{JT}}=1.107-0.0023 P\left(\text { units } \mathrm{K} \mathrm{~atm}^{-1}, P \text { in atm, } T=300 \mathrm{~K}\right)
\end{aligned}
$$

Compare your result with that which would be obtained for an ideal gas.
D. Consider the reaction, (1) $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows 2 \mathrm{NOCl}(g)$. At $300^{\circ} \mathrm{C}$ this reaction has an equilibrium constant $K_{1}{ }^{\circ}=2.73$.

1. Give the conditions for chemical reaction equilibrium in this reaction, in terms of chemical potentials. Be specific.
2. Calculate K° (call it $K_{2}{ }^{\circ}$) for the reaction, (2) $\mathrm{NOCl}(g) \rightleftarrows \mathrm{NO}(g)+1 / 2 \mathrm{Cl}_{2}(g)$, at $300^{\circ} \mathrm{C}$.
3. A reaction vessel is charged initially with $1.00 P^{\circ}$ of $\mathrm{NO}, 2.00 P^{\circ}$ of Cl_{2}, and $1.50 P^{\circ}$ of NOCl at $300^{\circ} \mathrm{C}$. Calculate the reaction quotient Q_{1}, and predict the direction in which Reaction 1 will proceed.
4. Suppose the volume of the vessel is such that it contains 0.60 mol NO under the conditions stated in 3 . Calculate the amounts of the other two components.
5. Starting with the conditions in 4 , what are the maximum and minimum possible values of the extent of reaction ξ : (i) for Reaction 1; and (ii) for Reaction 2?
