NAME:

(please print)

Honor Code Pledge and Signature:

Fundamental Constants: $R = 8.31451 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} = 0.0820578 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1} = 1.9872 \text{ cal mol}^{-1} \text{ K}^{-1}$

- I. (35) The Third Degree. The molar heat capacity of a solid substance at $P = P^{\circ}$ can be represented over a certain range of temperatures as a polynomial in *T*, $C_{P,m} = a + bT + cT^2$.
 - A. Obtain expressions for $H_{\rm m}^{\circ}$ and $S_{\rm m}^{\circ}$ for heating this substance from T_1 to T_2 .
 - B. For $CS_2(s)$ in the range 15 K 60 K, a = -11.53 J mol⁻¹ K⁻¹, b = 1.365 J mol⁻¹ K⁻², and c = -0.0095 J mol⁻¹ K⁻³. Calculate $H_{\rm m}^{\circ}$ and $S_{\rm m}^{\circ}$ for heating $CS_2(s)$ from 15.0 K to 60.0 K.
 - C. Use the Debye theory for the heat capacity at low temperatures to estimate $S_{\rm m}^{\circ}$ for CS₂(*s*) at 15.0 K; then calculate $S_{\rm m}^{\circ}$ at 60.0 K.
 - D. Can this information be used to evaluate $G_{\rm m}^{\circ}$ for the heating of CS₂(*s*) from 15.0 K to 60.0 K? Explain very briefly.

II. (25) **Shifty Reactions.** The <u>shift reaction</u> — $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ — is important in the commercial production of hydrogen. Use tabulated values of the free energy function given below to calculate K° for this reaction at 1000 K.

Gaseous elements and compounds with values referenced to H_0 .

	$-(G_T-H_0^{\bullet})/RT$					$(H^{\bullet}_{298}-H_{0}^{\bullet})/R$	$H^{\bullet}_{f,0}/R$
	298.15 K	500 K	1000 K	1500 K	2000 K	(K)	$(10^3 \mathrm{K})$
H ₂	12.301	14.076	16.485	17.921	18.968	1018.5	_
O ₂	21.173	22.992	25.521	27.088	28.243	1044.0	_
CO	20.275	22.086	24.558	26.069	27.183	1042.9	-13.69 ± 0.02
CO ₂	21.934	24.001	27.246	29.445	31.138	1126.4	-47.29 ± 0.01
H ₂ O	18.716	20.802	23.674	25.493	26.881	1191.3	-28.736 ± 0.005
CH ₄	18.376	20.531	24.00	26.63	28.82	1204.7	-7.999

- A. Use thermodynamic data tabulated below to calculate H°_{298} , S°_{298} , and G°_{298} for this process.
- B. Specify <u>precisely</u> what states of reactants and products are implied for these calculated quantities. Then construct a <u>4-step</u>, constant-*T* path that accomplishes the conversion from reactant to product and includes the equilibrium conversion of liquid to gas at the vapor pressure *P* of $Br_2(l)$ at 25.0°C.
- C. Use your results from A (and B) to calculate H_{vap} and the approximate vapor pressure of Br₂(*l*) at 25°C.
- D. $V_{\rm m}$ of Br₂(*l*) is 51.2 cm³/mol. Calculate the activity of Br₂(*l*) under Ar gas at $P_{\rm Ar}$ = 777 atm.
- E. Hence, what is the approximate vapor pressure of $Br_2(l)$ at $P_{Ar} = 777$ atm? (Neglect the effect of the Ar on the fugacity of $Br_2(g)$.)
- F. In discussing the vapor/condensed-phase equilibrium processes of Br₂ in class, we illustrated with a figure showing two intersecting straight lines. What was plotted on the two axes, and why were there two lines?

STANDARD-STATE THERMODYNAMIC PROPERTIES AT 25°C AND 1 BAR

Substance	<i>H</i> [•] _{<i>f</i>,298} (kJ/mol)	G [•] _{f,298} (kJ/mol)	S _{m,298} J mol K	C [*] _{P,m,298} J mol K
Br(g)	111.884	82.396	175.022	20.786
Br(aq)	-121.55	-103.97	82.4	-141.8
$Br_2(l)$	0	0	152.231	75.689
$Br_2(g)$	30.907	3.110	245.463	36.02

IV. (45) Short Shots. Do JUST 3 of the following.

A. Consider the <u>ideal gas</u> dissociation equilibrium, A(g) = B(g) + 2C(g).

- 1. Give the equilibrium expression for K°_{P} in terms of the partial pressures of reactants and products.
- 2. Obtain an equation which could be solved to yield the degree of dissociation in terms of K°_{P} and the total pressure *P*. [Hint: Start with n_0 mols of A and no B or C.]

- B. Consider the virial 2 equation (*i.e.*, the version that is a power series in *P*).
 - 1. Give this equation through the term that includes the third virial coefficient.
 - 2. Define the compressibility factor Z for a gas that obeys this equation.
 - 3. Obtain expressions for the <u>fugacity coefficient</u> and the <u>fugacity f for such a gas</u>.

C. Long ago we determined that the Joule-Thomson coefficient μ_{JT} is related to C_P and $(H/P)_T$ by $(H/P)_T = -C_P \mu_{JT}$. Use this result to evaluate H for the isothermal (T = 300 K) compression of 1.00 mol of CO₂ from 1.00 atm to 50.00 atm, given the following expressions for $C_P(T)$ and $\mu_{JT}(P)$:

 $C_{P,m} = 26.00 + 0.0435 T - 1.483 \times 10^{-5} T^2$ (units J mol⁻¹ K⁻¹; T in K)

 $\mu_{JT} = 1.107 - 0.0023 P$ (units K atm⁻¹, P in atm, T = 300 K)

Compare your result with that which would be obtained for an ideal gas.

- D. Consider the reaction, (1) $2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) = 2 \operatorname{NOCl}(g)$. At 300°C this reaction has an equilibrium constant $K_1^\circ = 2.73$.
 - 1. Give the conditions for chemical reaction equilibrium in this reaction, in terms of chemical potentials. <u>Be specific</u>.
 - 2. Calculate K° (call it K_2°) for the reaction, (2) NOCl(g) NO(g) + 1/2 Cl₂(g), at 300°C.
 - 3. A reaction vessel is charged initially with 1.00 P° of NO, 2.00 P° of Cl₂, and 1.50 P° of NOCl at 300°C. Calculate the reaction quotient Q_1 , and predict the direction in which Reaction 1 will proceed.
 - 4. Suppose the volume of the vessel is such that it contains 0.60 mol NO under the conditions stated in 3. Calculate the amounts of the other two components.
 - 5. Starting with the conditions in 4, what are the maximum and minimum possible values of the extent of reaction : (i) for Reaction 1; and (ii) for Reaction 2?