NAME: \qquad
(please print)

CHEMISTRY 230 - Tellinghuisen 1st Hour Exam - 10/4/01

Honor Code Pledge and Signature:

Fundamental Constants: $\quad R=8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.0820578 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=1.9872 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
I. (30) Hot Metal. 175.0 g of a metal at $115.0^{\circ} \mathrm{C}$ is dropped into 24.0 g of water at $10.0^{\circ} \mathrm{C}$, and the system is allowed to reach thermal equilibrium in an open, adiabatic container. The final temperature is $29.0^{\circ} \mathrm{C}$. The heat capacity of water may be taken as $c_{P}=1.00 \mathrm{cal} \mathrm{g}^{-1} \mathrm{~K}^{-1}$.
A. Calculate $q_{\text {met }}, q_{\text {wat }}$, and the total q for this process. Also determine the average $C_{P, \text { met }}$ and $c_{P, \text { met }}$ over the relevant T range.
B. Assuming that volume changes are negligible, calculate $\Delta H, \Delta U, \Delta S_{\text {met }}, \Delta S_{\text {wat }}$, and the total ΔS for this process. (Assume heat capacities are constant over the respective T ranges.)
C. Is this process a reversible one?
II. (25) Heat Pumps, in Hot Times and Cold. An ideal heat pump (i.e., one operating on a reversible Carnot cycle) is used to maintain a home at $20^{\circ} \mathrm{C}$ in winter and at $24^{\circ} \mathrm{C}$ in summer. Calculate the pump's ideal efficiency (defined in terms of heat removed or delivered, as appropriate) if the outside temperature is $0^{\circ} \mathrm{C}$ in the winter and $35^{\circ} \mathrm{C}$ in the summer. Specifically, calculate the ideal amount of heat delivered or removed (as appropriate) in the two seasons (in kJ) per kJ of work input.
III. (25) Taking Gas (ideally speaking). n moles of a perfect gas having $C_{V, \mathrm{~m}}=\frac{3}{2} R$ is heated from T_{1} to T_{2} along a path described by $V=b T^{3}$, where b is a positive constant, independent of T. At all times $P_{\text {ext }}=P$. Obtain expressions for the following: $q, w, \Delta U, \Delta H$, and ΔS. [For full credit, your answers should be expressed entirely in terms of n, R, b, T_{1}, and T_{2}.]
IV. (40) The Essentials.
A. Plus and Minus. For each of the following processes, state whether each of the given quantities is positive (+), negative (-), zero, or indeterminate (ind).

1. A perfect gas undergoes a Joule expansion.
2. A real gas undergoes a Joule-Thomson expansion.
3. One mole of liquid water is vaporized reversibly at its normal boiling point.
4. A real gas is taken completely around a Carnot (reversible) cycle in a clockwise sense on a $P-V$ diagram.
5. A real gas undergoes a cyclical process that is in part irreversible.
6. $\quad \mathrm{H}_{2}(g)$ and $\mathrm{O}_{2}(g)$ react explosively to form $\mathrm{H}_{2} \mathrm{O}(g)$ in an isolated system (e.g., a bomb calorimeter).

q	w	ΔT	ΔP	ΔU	ΔH	ΔS	$\Delta S_{\text {univ }}$

(1)
(6)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
B. Inten/Extensive. Indicate whether each of the following quantities is intensive, extensive, or neither:
P :
V :
n / V :
T :
S : mass:
density:
$C_{P}:$
$\left(P V_{\mathrm{m}}\right)$:
$\mu_{J:}$
C. State functions. Indicate (yes or no) whether each of the following cyclic integrals must vanish for a closed system with $P-V$ work only:

$$
\begin{array}{ll}
\oint V^{2} d P: & \oint \frac{d q}{T}: \\
\oint(S d T+T d S): & \oint(d q+d w): \\
\oint \frac{d w_{\mathrm{rev}}}{V}: & \oint C_{P, \text { id.gas }} d T:
\end{array}
$$

Prob I
II \qquad
III
IV
V \qquad
V. (15) Derivations. Do ONLY ONE of the following TWO.
A. Express the exact differential $d U$ for a closed system in terms of the independent variables T and V and also in terms of $d q$ and $d w$. Combine these to obtain an expression for $d q_{\text {rev }}$ in terms of $C_{V} d T, P d V$, and $(\partial U / \partial V)_{T} d V$.
B. We will soon be able to show that $(\partial H / \partial P)_{T}=V-T(\partial V / \partial T)_{P}$.

1. What does this equation yield for $(\partial H / \partial P)_{T}$ for an ideal gas?
2. What does it yield for $(\partial H / \partial P)_{T}$ for a gas that obeys the equation of state, $P(V-n b)=n R T$, where b is a constant (independent of T) specific to the gas?
3. Hence, in the latter case what does it yield for the Joule-Thompson coefficient?
