NAME:

(please print)

Honor Code Pledge and Signature:

Fundamental Constants: $R = 8.31451 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} = 0.0820578 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1} = 1.9872 \text{ cal mol}^{-1} \text{ K}^{-1}$

- I. (30) Hot Metal. 175.0 g of a metal at 115.0°C is dropped into 24.0 g of water at 10.0°C, and the system is allowed to reach thermal equilibrium in an open, adiabatic container. The final temperature is 29.0°C. The heat capacity of water may be taken as $c_P = 1.00$ cal g^{-1} K⁻¹.
 - A. Calculate q_{met} , q_{wat} , and the total q for this process. Also determine the average $C_{P,\text{met}}$ and $c_{P,\text{met}}$ over the relevant T range.
 - B. Assuming that volume changes are negligible, calculate H, U, S_{met} , S_{wat} , and the total S for this process. (Assume heat capacities are constant over the respective T ranges.)
 - C. Is this process a reversible one?

II. (25) **Heat Pumps, in Hot Times and Cold.** An ideal heat pump (*i.e.*, one operating on a reversible Carnot cycle) is used to maintain a home at 20°C in winter and at 24°C in summer. Calculate the pump's ideal efficiency (defined in terms of heat removed or delivered, as appropriate) if the outside temperature is 0°C in the winter and 35°C in the summer. Specifically, calculate the ideal amount of heat delivered or removed (as appropriate) in the two seasons (in kJ) per kJ of work input.

III. (25) **Taking Gas (ideally speaking).** *n* moles of a perfect gas having $C_{V,m} = \frac{3}{2}R$ is heated from T_1 to T_2 along a path described by $V = bT^3$, where *b* is a positive constant, independent of *T*. At all times $P_{\text{ext}} = P$. Obtain expressions for the following: *q*, *w*, *U*, *H*, and *S*. [For full credit, your answers should be expressed entirely in terms of *n*, *R*, *b*, T_1 , and T_2 .]

IV. (40) The Essentials.

A. **Plus and Minus.** For each of the following processes, state whether each of the given quantities is positive (+), negative (-), zero, or indeterminate (ind).

- 1. A perfect gas undergoes a Joule expansion.
- 2. A real gas undergoes a Joule-Thomson expansion.
- 3. One mole of liquid water is vaporized reversibly at its normal boiling point.
- 4. A real gas is taken completely around a Carnot (reversible) cycle in a clockwise sense on a *P-V* diagram.
- 5. A real gas undergoes a cyclical process that is in part irreversible.
- 6. $H_2(g)$ and $O_2(g)$ react explosively to form $H_2O(g)$ in an isolated system (*e.g.*, a bomb calorimeter).

q	W	Т	Р	U	Н	S	Suni

B. Inten/Extensive. Indicate whether each of the following quantities is intensive, extensive, or neither:

<i>P</i> :	<i>V</i> :	n_{V} :
<i>T</i> :	<i>S</i> :	mass:
density:	Ср:	$(PV_{\rm m})$:

μ*յ*:

- C. **State functions.** Indicate (yes or no) whether each of the following cyclic integrals must vanish for a closed system with *P*-*V* work only:
 - $\circ V^{2}dP: \qquad \circ \frac{dq}{T}:$ $\circ (SdT + TdS): \qquad \circ (dq + dw): \qquad \mathbf{Prob I}_{\underline{}}$ $\circ \frac{dw_{rev}}{V}: \qquad \circ C_{P,id,gas}dT: \qquad \mathbf{II}_{\underline{}}$ $\mathbf{IV}_{\underline{}}$

V

V. (15) Derivations. Do ONLY ONE of the following TWO.

A. Express the exact differential dU for a closed system in terms of the independent variables *T* and *V* and also in terms of dq and dw. Combine these to obtain an expression for dq_{rev} in terms of $C_V dT$, P dV, and $(U/V)_T dV$.

- B. We will soon be able to show that $(H/P)_T = V T (V/T)_P$.
 - 1. What does this equation yield for $(H/P)_T$ for an ideal gas?

2. What does it yield for $(H/P)_T$ for a gas that obeys the equation of state, P(V-nb) = nRT, where *b* is a constant (independent of *T*) specific to the gas?

3. Hence, in the latter case what does it yield for the Joule-Thompson coefficient?