The following is an example of a Diels-Alder reaction which you will learn more about next semester. This reaction is believed to proceed through a single step. At room temperature, the reaction enthalpy is -9.1 kcals •mol⁻¹ and the entropy of -0.027 kcals •mol⁻¹. Calculate the equilibrium constant for the reaction. Show all your work. (You do not need to now anything about the Diels-Alder Reaction to answer the question.)
 (5 pts)

$$\Delta G = \Delta H - T\Delta S$$
= (-9.1) - (298) (-0.027)
= -1.0 Keel/mol
 $\Delta G = -RT \ln |kee|$
 $Key = e^{(4x103)}(298) - 5.5$

a. Calculate the degrees of unsaturation of a compound with the formula C₁₁H₁₃Cl₂NO₃.
 (3 pts)

Correction Apr:
$$2CI - H_Z$$
 10
 $2 = 5$ degrees of unsaturation

Correction Apr: $2CI - H_Z$
 $1N + H_I$
 H_{IO}

b. What does this mean? (2 pts)

There is some combination of rings : TI-bonds that add up to 5

3. Designate the following alkenes as (E) or (Z). (4 pts)

 Give the product for the electrophilic addition of HCl to 1-(1,1-dimethylethyl)-cyclohexene. Draw the most stable chair conformation of the product. (5 pts)

5. Give the mechanism for the free radical chlorination of methane to chloromethane. (6 pts)

propagation

Termination

$$CI \xrightarrow{f} CI \xrightarrow{g} CI-CI$$

$$CI \xrightarrow{f} CH_3 \xrightarrow{g} CI-CH_3$$

$$H_3C-CH_3 \xrightarrow{g} H_3C-CH_3$$

Problem

1: ____(5 pts)

2: (5 pts)

3: (4 pts)

4: (5 pts) 5: (6 pts)

Total out of 25: