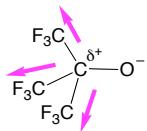

Chapter 24: Phenols. Alcohols contain an OH group bonded to an sp^3 -hybridized carbon. Phenols contain an OH group bonded to an sp^2 -hybridized carbon of a benzene ring

24.1: Nomenclature (please read)

24.2: Structure and Bonding (please read)

24.3: Physical Properties (please read). Like other alcohols the OH group of phenols can participate in hydrogen bonding with other phenol molecules and to water.

24.4: Acidity of Phenols. Phenols are more acidic than aliphatic alcohols



234

Factors that influence acidity:

Inductive effect:

$\text{CH}_3\text{CH}_2\text{OH}$	$\text{FCH}_2\text{CH}_2\text{OH}$	$\text{F}_2\text{CHCH}_2\text{OH}$	$\text{F}_3\text{CCH}_2\text{OH}$	$(\text{F}_3\text{C})_3\text{COH}$
$\text{p}K_a \sim 16.0$	14.4	13.3	12.4	5.4

Electron-withdrawing groups make an alcohol a stronger acid by stabilizing the conjugate base (alkoxide)

A benzene ring is generally considered electron withdrawing and stabilizes the negative charge through inductive effects

235

Resonance effect: the benzene ring stabilizes the phenoxide ion by resonance delocalization of the negative charge

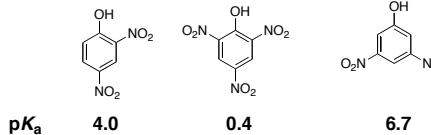
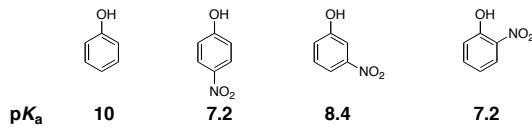
24.5: Substituent Effects on the Acidity of Phenols.

Electron-donating substituents make a phenol less acidic by destabilizing the phenoxide ion (resonance effect)

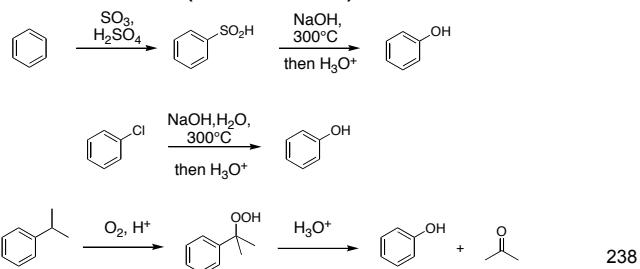
$\text{p}K_a \sim$	$\text{X} = \text{-H}$	10	-CH_3	10.3	-OCH_3	10.2	-NH_2	10.5
--------------------	------------------------	----	----------------	------	-----------------	------	----------------	------

236

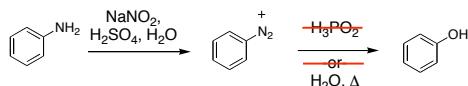
Electron-withdrawing substituents make a phenol more acidic by stabilizing the phenoxide ion through delocalization of the negative charge and through inductive effects.

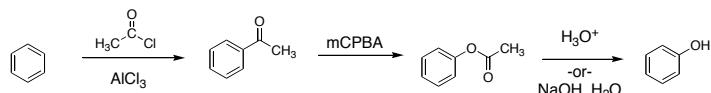


$\text{p}K_a \sim$	$\text{X} = \text{-H}$	10	-Cl	9.4	-Br	9.3	-NO_2	7.2
--------------------	------------------------	----	--------------	-----	--------------	-----	----------------	-----

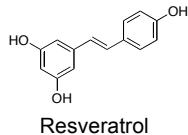
The influence of a substituent on phenol acidity is also dependent on its position relative to the -OH


$\text{p}K_a$	$\text{X} = \text{-Cl}$	9.4	-NO_2	7.2	-OCH_3	10.2	-CH_3	10.3	$\text{X} = \text{-Cl}$	9.1	-NO_2	8.4	-OCH_3	9.6	-CH_3	10.1
---------------	-------------------------	-----	----------------	-----	-----------------	------	----------------	------	-------------------------	-----	----------------	-----	-----------------	-----	----------------	------

237

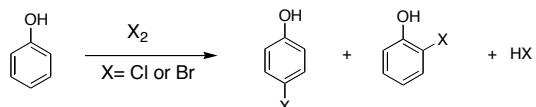

The effect of multiple substituents on phenol acidity is additive.


24.6: Sources of Phenols. (Table 24.3)


From aryl diazonium ion

From aryl ketones

24.7: Naturally Occurring Phenols. (please read) Phenols are common in nature.



239

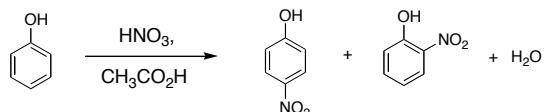
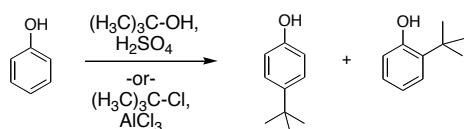

24.8: Reactions of Phenols: Electrophilic Aromatic Substitution.

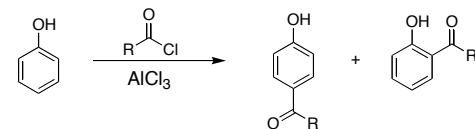
Table 24.4 (a review from Chapter 12). The hydroxyl group of phenols is a strong activator and *o*-/*p*-director.


a. Halogenation. Phenols are so activated that they often react with Br_2 and Cl_2 without a catalyst.

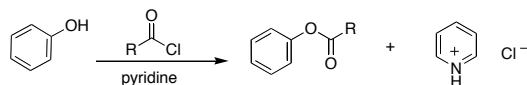
b. Nitration.



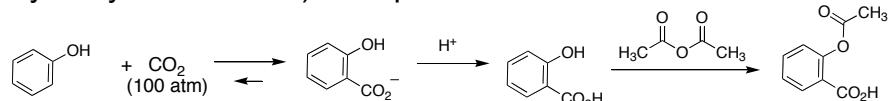
c. Sulfonation.

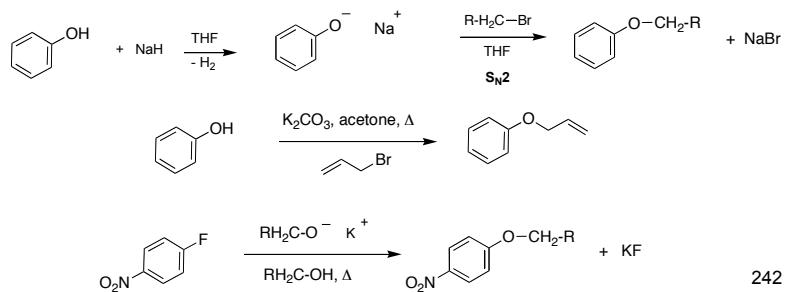


240


d. Friedel-Crafts alkylation

e. Friedel-Crafts acylation

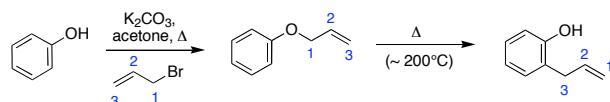

24.9: Acylation of Phenols. In the absence of AlCl_3 , phenols react with acid chlorides to afford phenyl esters.


Note: The Fischer esterification works poorly for the preparation of phenyl esters

241

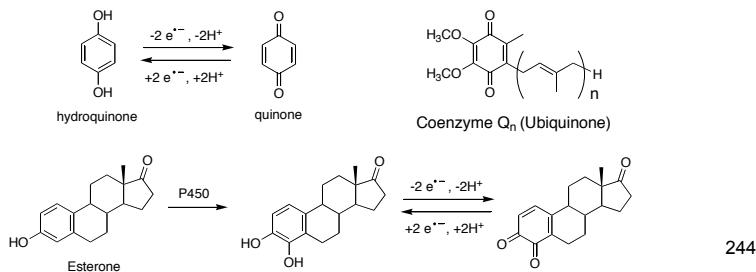
24.10: Carboxylation of Phenols. Aspirin and the Kolbe-Schmitt Reaction. (please read) Synthesis of salicylic acid (*o*-hydroxybenzoic acid) from phenol.

24.11: Preparation of Aryl Ethers. The phenoxide ion is a good nucleophile and reacts with 1° and 2° alkyl halides and tosylates afford aryl ethers (Williamson ether synthesis)



242

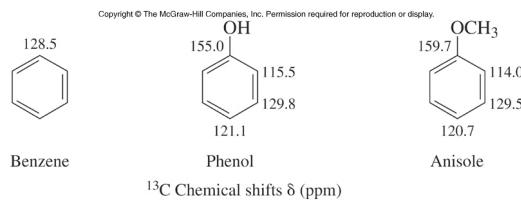
24.12: Cleavage of Aryl Ethers by Hydrogen Halides. Aryl alkyl ethers can be cleaved by HX to give phenols.


24.13: Claisen Rearrangement. Thermal rearrangement of an aryl allyl ether to an *o*-allyl phenol.

243

The Claisen rearrangement involves a concerted, pericyclic mechanism, which is related to the Diels-Alder reaction

24.14 Oxidation of Phenols: Quinones (please read)



24.15: Spectroscopic Analysis of Phenols. Largely the same as for alcohols (Ch 15.14).

IR: broad O-H stretch $\sim 3600 \text{ cm}^{-1}$. C-O single bond stretch is $\sim 1200-1250 \text{ cm}^{-1}$, which is shifted from that of aliphatic alcohols ($1000-1200 \text{ cm}^{-1}$).

¹H NMR: Like aliphatic alcohols, the O-H proton resonance is observed over a large chemical shift range as a broad singlet.

¹³C NMR: The *sp*²-carbon directly attached to the OH has a chemical shift of $\sim 150-160 \text{ ppm}$.

245